

Convolutional Neural Networks & Deep Learning

Pre deep learning era

Cons:

- Hand crafted features are difficult to engineer!
- Time consuming process.
- Which set of features maximizes accuracy?
- Tends to overfit.

What is Deep Learning?

Composition of non-linear transformation of data

Why "deep"? Find complex patterns by learning hierarchical features

But deep learning is simple!

- Deep Learning builds an end-to-end recognition system.
- Non linear transformation of raw pixels directly to labels.
- Build a complex non-linear system by combining 4 simple building blocks.

Convolutions Pooling

Activation functions Softmax

Convolutions

Operation	Kernel	Image result
Identity	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	
Edge detection	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$	
	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	

Convolutions

Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Box blur (normalized)	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	
Gaussian blur 3 × 3 (approximation)	$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	
Gaussian blur 5 x 5 (approximation)	$\frac{1}{256} \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & 36 & 24 & 6 \\ 4 & 16 & 24 & 16 & 4 \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix}$	
Unsharp masking 5 x 5 Based on Gaussian blur with amount as 1 and threshold as 0 (with no image mask)	$ \frac{-1}{256} \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & -476 & 24 & 6 \\ 4 & 16 & 24 & 16 & 4 \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix} $	

Figure from S-17 16-824 CMU

activation map

Convolution – Spatial Dimensions

Output size: (N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 =>
$$(7 - 3)/1 + 1 = 5$$

stride 2 => $(7 - 3)/2 + 1 = 3$
stride 3 => $(7 - 3)/3 + 1 = 2.33$:\

Convolution – Spatial Dimensions

In practice: Common to zero pad the border

0	0	0	0	0	0		
0							
0							
0							
0							

e.g. input 7x7

3x3 filter, applied with stride 1

pad with 1 pixel border => what is the output?

```
(recall:)
(N - F) / stride + 1
```

Convolution: Example

Why not use FCs for learning image features?

- Huge number of parameters in Fully connected network.
- Full connectivity is wasteful. Leads to overfitting.
- (200x200x3) x 5 neurons = 120,000x5 parameters in FC!
- No spatial relation in FCs.
- Just learn several filters (weights in CNNs).
- 5x5x100 = 2500 parameters for learning 100 filters in CNNs.

Max-pooling

- Non-linear down sampling.
- Input is partitioned into non-overlapping patches and maximum value in each partition is chosen.

Figure from Fei-Fei Li & Andrej Karpathy & Justin Johnson (CS231N)

Why Max-pool?

- Reduce spatial size of representation.
- Reduce the number of parameters drastically.
- 2x2 filter with stride = 2 discards 75% of the activations!
- Control overfitting.
- Provides translation invariance.

Linear Activations

Why *non-linear* activation functions?

We need a non-linear transformation of data such that the output is a complex, non-linear transformation of the input.

History of Activation Functions

Name	Formula	Year
none	y = x	-
sigmoid	$y = \frac{1}{1 + e^{-x}}$	1986
tanh	$y = \frac{e^{2x} - 1}{e^{2x} + 1}$	1986
ReLU	y = max(x, 0)	2010
(centered) SoftPlus	$y = \ln\left(e^x + 1\right) - \ln 2$	2011
LReLU	$y = max(x, \alpha x), \alpha \approx 0.01$	2011
maxout	$y = \max(W_1x + b_1, W_2x + b_2)$	2013
APL	$y = \max(x,0) + \sum_{s=1}^{S} a_i^s \max(0, -x + b_i^s)$	2014
VLReLU	$y = max(x, \alpha x), \alpha \in 0.1, 0.5$	2014
RReLU	$y = max(x, \alpha x), \alpha = random(0.1, 0.5)$	2015
PReLU	$y = max(x, \alpha x), \alpha$ is learnable	2015
ELU	$y = x$, if $x \ge 0$, else $\alpha(e^x - 1)$	2015

Sigmoid

$$z=\sum_{i=0}^d w_i x_i$$
 $y=rac{1}{1+e^{-z}}$ Logistic Function $y=\sigma\Bigl(\sum_{i=0}^d w_i x_i\Bigr)$ $rac{d\sigma(x)}{dx}=\sigma(x)(1-\sigma(x))$

Sigmoid

- Squashes numbers to range [0,1] can kill gradients. (Vanishing gradient)
- Best for learning "logical" functions i.e. functions on binary inputs.
- Not as good for image networks (replaced by RELU)

Rectified Linear Unit

$$z = \sum_{i=0}^{d} w_i x_i \qquad y = \begin{cases} z, & \text{if } z > 0 \\ 0, & \text{otherwise} \end{cases}$$

ReLU:
$$y = \max(0, z)$$

Noisy ReLu:
$$y = \max(0, z + \epsilon)$$
 $\epsilon \sim \mathcal{N}(0, \sigma)$

Leaky ReLu:
$$y = \begin{cases} z, & \text{if } z > 0 \\ az, & \text{otherwise} \end{cases}$$

response map

Note: Output is a nonlinear function of input, but is linear above zero

Why ReLu?

- Inexpensive computations. (Almost 6x faster than sigmoid!)
- No vanishing gradient!
- Leaky ReLus used to prevent "dying" neurons.
- Sparse gradients. (Skip computations where input < 0)

Softmax Function

- All positive values which sum to 1.
- Final layer after output layer.
- Neat probabilistic interpretation gives probabilities of each class.

$$\sigma(x_j) = \frac{e^{x_j}}{\sum_i e^{x_i}}$$

Deep Learning is just a combination of Convolutions + Pooling + ReLu

Network Initialization

How do you initialize all the weights in the network?

We do not know the final values of the weights..

All weights = 0?

- No learning.
- All outputs are 0.
- Errors are not backpropagated.
- No updates.

Initialized to small random values

- We want the weights close to 0, but not exactly 0.
- Initialize to small random values to break symmetry.
- Recommended : Sample from Uniform(-r, r)

$$r = 4\sqrt{\frac{6}{in + out}}$$

Top deep learning libraries

theano

Terminologies

- **Iteration**: 1 forward pass
- **Epochs** : 1 full training cycle on data set
- Batch-size : Number of samples trained per iteration
- **Learning Rate** : Update = Learning Rate x Gradient
- Max-Epochs : Usually 20. (Depends on data set)